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Prandtl number dependence of Nusselt number
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(Received 10 August 1999 and in revised form 8 May 2000)

The dependence of the Nusselt numberNu on the Rayleigh Ra and Prandtl Pr number
is determined for 104 < Ra < 107 and 0.07 < Pr < 7 using DNS with no-slip upper
and lower boundaries and free-slip sidewalls in a 8 × 8 × 2 box. Nusselt numbers,
velocity scales and boundary layer thicknesses are calculated. For Nu there are good
comparisons with experimental data and scaling laws for all the cases, including Ra2/7

laws at Pr = 0.7 and Pr = 7 and at low Pr, a Ra1/4 regime. Calculations at Pr = 0.3
predict a new Nu ∼ Ra2/7 regime at slightly higher Ra than the Pr = 0.07 calculations
reported here and the mercury Pr = 0.025 experiments.

1. Introduction
It has long been hoped that an unexpected, non-classical scaling law in a simple

turbulent flow might lead to a new understanding of turbulent scaling in many
systems. Thus, considerable excitement was engendered by the now classic experiment
of Heslot, Castaing & Libchaber (1987) who found that the scaling of Nusselt number,
Nu, as a function of Rayleigh number (Ra) is better represented by Nu ∼ Ra2/7 than
the previously accepted relation Nu ∼ Ra1/3. The basis of this proposal was an
experiment in He at 7 K, the apparatus being a 1 cm, aspect-ratio 1 cell. In addition
to the new scaling, it was proposed that there was a transition from old to new scaling
at Ra > 2× 107. Although this particular transition has been called into question, the
paper by Heslot et al. was the first to indicate that the classical 1/3 law was deficient
at very large Ra. The original interpretation of the results depended on observations
in a water tank with Prandtl number Pr = ν/κ = 7 (Zocchi, Moses & Libchaber
1990), where ν is the viscosity and κ is the thermal diffusivity, and was in terms of
large-scale recirculating flow patterns and boundary-layer motions.

However, an experimental result might not lead to a new understanding if it is not
universal and depends too strongly on the particular properties of its geometry. Such
questions concerning the universality of the 2/7 result have been raised. Most earlier
experiments were in wide, flat, large-aspect-ratio boxes using water with Prandtl
number Pr = 7 (Chu & Goldstein 1973), while the original 2/7 experiments were in
small-aspect-ratio cells using a gas with Pr = 0.7. The small aspect ratio could be the
source of the recirculation pattern and it has long been speculated that varying the
Prandtl number could change the scaling laws (Spiegel 1962).

Some of these issues have been addressed with additional experiments and numer-
ical simulations. Fitting Nu ∼ RaβT , these have found that βT < 1/3 and near 2/7
is ubiquitous, appearing in large-aspect-ratio experiments (Wu & Libchaber 1992)
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and simulations (Kerr 1996), with rotation (Julien et al. 1996), and even some two-
dimensional cases (Deluca et al. 1990). Significant velocity boundary layers on the
upper and lower surface also seem ubiquitous. Visualizations (Kerr 1996) show the
presence of local recirculating patterns and boundary layers even without small as-
pect ratio or sidewalls. It has even been suggested that in very large-aspect-ratio
(A = W/H = 12) experiments (Krishnamurti & Howard 1981) that there is evidence
for sweeping across the entire domain. The most recent very high Rayleigh number
value for βT in a non-rotating tall cylinder of aspect ratio A = 0.5 is βT = 0.309
(Niemela et al. 2000), a nearly perfect average of the old and new exponent.

This paper addresses the question of the dependence upon Prandtl number. The
approach is to assume that both thermal and velocity boundary layers play a crucial
role in determining scaling and crossovers and to investigate the scaling properties of
boundary layer thicknesses in detail. The reason for believing that velocity boundary
layers play a fundamental role stems from the relationship between the scaling of the
heat flux and the scaling of a thermal boundary layer λT :

λT ∼ 1/Nu ∼ Ra−βT . (1.1)

It has been shown that the classical theory that predicts Nu ∼ Ra1/3 is equivalent to
assuming that all boundary layer thicknesses, temperature and velocity have the same
λ ∼ Ra1/3 scaling (Herring 1966). Large-scale motions such as recirculation patterns
could create different Ra scalings for boundary layers in velocity λu as well as in
temperature, and thereby modify the heat flux.

The role of Prandtl number is that the relative values of the thermal and velocity
boundary layer thicknesses should depend on the ratio of viscosity to diffusivity,
which suggests there that could be crossovers in boundary layer thicknesses as a
function of Pr. Such crossovers in length scales are often associated with transitions
in scaling behaviour. The possibility of additional transitions first appeared with
the theoretical predictions of how the velocity boundary layer would scale with Ra.
Shraiman & Siggia (1990) suggested that large-scale flows would be induced by
convective heating and assumed that the velocity boundary layer thickness would be
equal to the classical viscous boundary layer z+ and would be greater than the thermal
boundary layer thickness, that is λu = z+ > λT . They then showed how Nu ∼ Ra2/7

scaling could be obtained and predicted that λu ∼ Ra−3/7 and that Nu ∼ Pr−1/7.
Since λT ∼ 1/Nu ∼ Ra−2/7, 3/7 > 2/7, and λu > λT for this regime, there should
be a crossover at some large critical Rac to a regime with λu < λT . This raised the
possibility that some new scaling behaviour would develop.

A competitive theory for the 2/7 law based upon mixing length and plume gener-
ation arguments was proposed by Castaing et al. (1989) and has since been refined
to address Prandtl number (Cioni, Ciliberto & Sommeria 1997). This theory pre-
dicts a velocity boundary layer thickness based upon the estimated thickness of the
mixed layer, to be called λv , for which λv ∼ Ra−1/7. For Pr dependence it predicts
Nu ∼ Pr−1/7 for Pr > 1 as before (Shraiman & Siggia 1990) and for Pr < 1 it
predicts Nu ∼ Pr2/7. Experiments (Cioni et al. 1997) and simulations (Kerr, Herring
& Brandenburg 1995; Verzicco & Camussi 1999) do find for Pr < 1 a strong increase
in Nu between mercury Pr = 0.025 and a gas Pr = 0.7. A different Ra dependence
for mercury, Nu ∼ Ra0.25, is also found (Cioni et al. 1997; Verzicco & Camussi 1999).
This debate has continued with new questions about whether the boundary layer for
the range of Ra that gives the 2/7 scaling is truly turbulent (Chavanne et al. 1996).

This paper is organized as follows. After defining the equations simulated and
the parameter range simulated, the conclusions of previous work on the scaling of
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boundary layer thicknesses upon Ra will be discussed. Then the dependence of Nu
upon Ra and Pr emerging from the present DNS will be given and the dependence of
length scales upon Pr and Ra will be discussed. Crossovers in length scales are found
and the effects of these crossovers are discussed and predictions for new crossovers
are made. The variation in the scaling exponent of the Nu versus Ra scaling upon
Pr and Ra is weak, changing only between approximately 0.25 and 0.28, so as in the
previous Pr = 0.7 work (Kerr 1996), the primary evidence for crossovers will be in
the length scales. Another means to access the importance of the observed crossovers
is to relate them to changes in structure, which are discussed in the next section. This
work is an extension of an earlier low Rayleigh number study that showed the basic
dependence on Pr (Kerr et al. 1995) and is consistent with trends in calculations with
free-slip upper and lower boundaries (Herring & Jackson 1984).

2. Equations and parameters.
The equations to be solved here are the familiar incompressible Navier–Stokes and

temperature advection equations in the Boussinesq limit between two walls:

∂u

∂t
+ u · ∇u = − 1

ρ0

∇P + T ẑ + (1/Re)∇2u, (2.1)

∂T

∂t
+ u · ∇T = Pr∇2T , (2.2)

∇ · u = 0. (2.3)

No-slip, constant-temperature boundary conditions are used on the upper and lower
surfaces and free-slip, zero-flux boundary conditions are used on the sides in a
rectangular horizontal domain. The details of the Chebyshev method have been
presented before (Kerr 1996), with the addition that sine and cosine transforms now
replace Fourier transforms in the horizontal so as to be able to represent sidewall
boundary conditions. For these equations the Rayleigh number is

Ra =
αPrgd3∆T

ν2
, (2.4)

where αg = 1, d = 2 is the height of the box and ∆T = 2 is the temperature difference
across the box. The Nusselt number will be the value obtained from the normalized,
volume-averaged heat flux, since this was found to be the most stable definition of
Nu (Kerr 1996):

Nu =
wT

κ∆T/d
. (2.5)

Given long enough statistical samples this will equal the definition based upon the
wall derivative:

Nuw =
∂T/∂z|w

(T0 − T1)/d
. (2.6)

The Reynolds and Péclet numbers are

Re = Ud/ν, Pe = Ud/κ, (2.7)

where U is a large-scale velocity that is to be defined.
All the calculations will be for large aspect ratio, A = 4, whereas most of the

experiments are for small aspect ratio, A6 1. From preliminary work on simulations
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Pr

Ra 0.07 0.3 0.7 2.0 4.0 7.0

104 642 × 32 642 × 32 642 × 32
105 962 × 48 962 × 48 962 × 48
4× 105 1282 × 64 1282 × 64
106 1282 × 64 1282 × 64
2× 106 2562 × 128 1282 × 64
4× 106 2562 × 128 1922 × 96
107 2562 × 128 1922 × 96 1922 × 96 2562 × 128 2562 × 128

Table 1. The mesh sizes nx× ny × nz for the values of Ra and Pr simulated.

with this code for A = 1, Pr = 0.7 (Kerr, Brandenburg & Herring 2000), aspect ratio
has a noticeable effect upon Nu, recirculation patterns, and velocity profiles only for
A6 1. Since tests have shown that the effect of A appears to be insignificant once
A > 2, in order to concentrate upon the effects of Pr, this paper will consider only
A = 4 calculations. The results to be given are all from statistical samples of several
convective turnover times taken after the simulations had reached a statistically steady
state in a manner consistent with previous work (Kerr 1996).

Resolution was chosen to capture the smallest turbulent length scale, either the
Kolmogorov scale η = (ν3/ε)1/4 or the Batchelor scale ηB = Pr−1/2η. In the centre
of the cell there was roughly equal resolution in the horizontal and vertical with
∆x ≈ ∆z ≈ 4 min(η, ηB). While the (η, ηB) criterion was designed for resolving the
turbulence in the centre of the cell, previous work (Kerr 1996) found that this manner
of estimating the resolution also applies to the fine-scale Chebyshev resolution in the
boundary layer because η ≈ z+. The resolution is given in table 1. The maximum Ra
for all the Pr cases except Pr = 0.07 is 107. For Pr = 0.07 the maximum Rayleigh
number is 2 × 106 because low-Pr convection is more turbulent (higher Reynolds
number) with a small Kolmogorov scale. At high Pr, convection is barely turbulent
at moderate Ra and ηB determines resolution requirements.

3. Three lengths scales
Each of the two theories for the Nu ∼ Ra2/7 law that have been mentioned

(Shraiman & Siggia 1990; and Castaing et al. 1989) predicts that the Reynolds or
Péclet number (2.7) should vary as Ra3/7 and assume that λu > λT . To differentiate
between the two theories requires determining detailed velocity or kinetic energy
profiles as a function of both distance from the walls and Ra. Some velocities
have been determined experimentally, finding ε ≈ 0.46− 0.51 in Re ∼ Raε (Sano,
Wu & Libchaber 1989), which is slightly greater than the 3/7 ≈ 0.43 predictions
and is marginally closer to the classical prediction of 4/9 ≈ 0.44. However, flow
visualization is difficult in a gas, so detailed velocity profiles have so far eluded the
experimentalists. One attempt has been made to determine some sort of velocity
boundary layer thickness from cutoffs of temperature frequency spectra (Belmonte,
Tilgner & Libchaber 1994). It can be shown (Kerr et al. 1995) that this indirect
measurement is not directly related to any of the boundary layer thicknesses to be
discussed.

In numerical simulations, full velocity fields are available and vertical profiles can
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be used to find a variety of boundary layer thicknesses. This was taken advantage of
in the analysis of a series of three-dimensional simulations for Pr = 0.7 on meshes
as large as 288 × 288 × 96 (Kerr 1996). The velocity boundary layer thickness was
determined by three methods. First, from the wall derivative,

z+ =

(
ν

〈(∂u/∂z)2〉1/2
)1/2

, (3.1)

where a root-mean stress must be used because without a mean flow, the mean shear
〈du/dz〉 = 0. The second is z∗ ∼ 1/Re. (Our definition here of z∗ is independent of
the question of whether the flow is turbulent: see also the discussion of this quantity
in Kerr 1996.) And third, λu, which is the peak position of the horizontal kinetic
energy profiles. In a classical momentum boundary layer, all of the velocity boundary
layer thicknesses, z+, z∗ and λv , scale with Reynolds number in the same manner
(Kim, Moin & Moser 1987). The present DNS indicate that this is not the case
with convection. Instead, z∗ and z+ were found to be nearly the same and scale as
one prediction, (z∗, z+) ∼ Ra−3/7, and λu scaled as the other prediction λu ∼ Ra−1/7.
Furthermore, while λu > λT as the theories assumed, it was found that (z∗, z+) < λT .
Since the highest Ra is definitely in the 2/7 regime for large-aspect-ratio experiments
(Wu & Libchaber 1992), the satisfying aspect of this discovery is that it implies that
there will be no further crossovers since z+ < λT already is found.

Thus, the asymptotic high Rayleigh number regime for Pr = 0.7 suggested by
these simulations is one with three boundary layer thicknesses where z+ < λT < λu,
with Ra scaling exponents of approximately −3/7, −2/7, and −1/7 respectively. This
separation in length scales was the primary evidence used to support the Nu ∼ Ra2/7

scaling in the earlier numerical work (Kerr 1996), since the difference between 1/3 and
2/7 was not discernable in the numerical presentation of Nu vs.Ra found there. This
will again be the case here, with the statistical error for βT typically δβT ∼ 0.02 as
before (Kerr 1996). Therefore trends in βT , not particular values, will be emphasized,
and for economy of presentation we do not show error bars here; the margins of
error for one dimension are the same as in Kerr (1996).

One of the questions this paper tries to address is whether the order of the boundary
layer length scaling (i.e. z+ < λT < λu) is a requirement for 2/7. It will be shown that
for some Pr there are Ra regimes where z+ < λT < λu is not found. For a given value
of Pr, does this lead to different RaβT behaviour for Nu? And over the range of Ra
where z+ < λT < λu is found, does this invariably lead to Nu ∼ Ra2/7 behaviour? If
so, this would support the suggestion (Kerr 1996) that once z+ < λT < λu appears,
Nu ∼ Ra2/7 is the asymptotic high Rayleigh number scaling.

4. Nu vs. Ra for three Pr values
The current interest in Rayleigh–Bénard convection stems from the scaling and

transitions in Nusselt number, whose dependence upon Ra and Pr is given in figure
1 and discussed in this section. Nusselt number is plotted as a function of Ra for
Pr = 0.07, 0.3 and 7 and as a function of Pr for Ra = 107 for these Pr and in
addition Pr = 0.7, 2 and 4. Nu vs. Ra for Pr = 0.7 is not shown because the curves
are almost identical to those already published (Kerr 1996) and because the major
points to be made here are similar, but more obvious, for Pr = 0.3.

Dashed lines have been drawn in figure 1(a–c) for comparison with the experimental
and predicted Nusselt number dependences. In figure 1(a) for Pr = 0.07, the fit is
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Figure 1. Nu vs. Ra and Pr. (a–c) Nu vs. Ra for Pr = 0.07, 0.3, and 7.0. The βT in Nu = RaβT are
given. Triangles indicate where there is numerical data. Dashed lines are the power laws plotted for
each Pr. (d) Nu vs. Pr for Ra = 107. The inset is a blowup of the Pr> 0.7 regime on linear axes.
The dotted line in (d) is the value of Nu for Pr = 0.07 and Ra = 107 as extrapolated from (a).
Stars indicate experimental values at Pr = 0.025, 0.7 and 7. Dot-dashline is the experimental curve
from Liu & Ecke (1997). Triple-dot-dashline is the Pr−1/7 prediction of Shraiman & Siggia (1990).
All calculations are in a 8× 8× 2 box with no-slip, constant-temperature top/bottom and free-slip,
insulating sidewalls.

Nu ∼ Ra0.26, consistent with recent experiments for mercury (Cioni et al. 1997) with
Pr = 0.025 up to Ra = 109, where in Nu ∼ RaβT , βT = 0.25 and not 2/7 ≈ 0.285 over
a sufficiently long range of Ra so as to be convincing. The value of Nu for Pr = 0.07
and Ra = 107 used in figure 1(d) is obtained by extrapolating the Nu ∼ Ra0.26 trend
in figure 1(a) to Ra = 107. Slight changes in this power law would not affect the
primary trends with Pr that will be discussed.

In figure 1(b), Pr = 0.3, a Nu ∼ Ra0.285 dashed line is drawn. This is the fit for
Ra = 4 × 105 to 107. However, for Ra < 4 × 105, the slope is noticeably less. For
Ra = 105 to 4× 105, Nu ∼ Ra0.26. In figure 1(c), Pr = 7, a βT = 0.285 dashed line is
drawn again. And again it is only a partial fit for Ra between 4 × 105 and 107. The
dependence of Nu on Ra will be returned to below.

Figure 1(d) plots Nu for Ra = 107, with the value for Pr = 0.07 at Ra = 107

the extrapolated value from figure 1(a). Also plotted are a number of direct and
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extrapolated experimental values. These include experimental values from mercury
Pr = 0.025 with Nu = 9.24 (Cioni et al. 1997), large-aspect-ratio gas Pr = 0.7 (Wu
& Libchaber 1992) and water Pr = 6.7 (Chu & Goldstein 1973). The experimental
values for Pr = 4 to 7 at Ra = 107 are extrapolated from gaseous helium experiments
(Liu & Ecke 1997) at higher Ra assuming a 2/7 dependence on Ra.

The simulations are in good agreement with the experimental trends. Where details
are different from the conclusions of earlier experimental work, this is mainly due
to more values of Pr than before. The peak in Nu versus Pr is near Pr = 2, which
would suggest that Pr is not a major factor in recent experiments where Pr was
allowed to vary between 1 and 2 as one way of increasing the Rayleigh number
(Chavanne et al. 1996; Niemela et al. 2000). There is a strong increase in Nu with Pr
for Pr < 0.7, consistent with the experimental Nu for mercury Pr = 0.025. A power
law of Nu ∼ Pr0.12 fits the data between Pr = 0.07 and 0.7. The experimental fit
cited by Cioni et al. (1997) is Pr0.21, although the fit between the two experimental
points at Pr = 0.025 and Pr = 0.7 at Ra = 107 shown is Pr0.16. This and the present
numerical results would be consistent with the numerical fit of Pr0.14 of Verzicco &
Camussi (1999).

For 2 < Pr < 7 there is a gradual decrease of Nu with increasing Pr in good
agreement with the Pr = 4 to 7 helium data from Liu & Ecke (1997) and now also
data from Niemela et al. (2000). Both these simulations and the helium data find
a weaker decrease with Prandtl number than the predicted Pr−1/7 scaling shown in
figure 1(d) (Shraiman & Siggia 1990). A trend similar to this has now been observed
experimentally up to Pr = 300 (Ashkenazi & Steinberg 1990). To investigate this
further, simulations with Pr = 20 at sufficiently high Ra are feasible. There are also
experimental data for an electrochemical analogue to convection (Goldstein, Chiang
& See 1990) at a very high Prandtl number of 2000 with a Nusselt number that would
be consistent with the line of zero slope drawn between Pr = 0.7 and 7. The Reynolds
number at such a value of Pr would be very small and while the flow might exhibit
temporal chaos on a long time scale, it would not be turbulent and therefore might
not be relevant to the discussions here. To investigate this regime with simulations,
one could take the Pr →∞ limit where the advection term for the velocity in (2.1) is
eliminated and assume that the velocity is determined by

ν∇2u = ∇p+ ĝθ (4.1)

(see e.g. Herring 1969).
Many of these scaling trends could be consistent with new theoretical work by

Lohse & Grossman (2000) that divides the parameter space of Pr and Ra into several
regimes. In particular the low-Pr regime where Nu ∼ aRa1/4 + bRa1/3 is predicted.
The basis for their model is an assumption that the dissipation in the boundary layer
is laminar while the dissipation in the bulk is turbulent. Figures 3 and 4 below show
sharp gradients in the horizontal velocity profiles near the walls, while previous work
for Pr = 0.7 (Kerr 1996) shows a sharp rise in the dissipation near the wall so that a
large fraction (about 1/4) of the total turbulent dissipation is in the boundary layer.
Whether the boundary layer is turbulent or laminar is currently being investigated
more carefully.

5. Observed length scales
To understand what crossovers could be occurring in the Nu vs.Ra plots in figure

1, it is necessary to look at the three boundary layer thicknesses z∗, λT , and λu defined
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Figure 2. Length scales vs. Ra and Pr. (a–c) Length scales vs. Ra for Pr = 0.07, 0.3, and 7.0. Dashed
line, triangles is z∗ = 1/Pe from the prediction based upon classical velocity boundary layer theory
(Shraiman & Sigga 1990). Solidline, diamonds is λT /d = 0.5/Nu. Dot-dashline, triangle is λu, the
position of the peak of the horizontal kinetic energy profiles such as in figures 3 and 4 and is related
to the prediction of mixing length theory (Castaing et al. 1989). The ε in z∗/d = (Pr/Re) = Ra−ε are
given. (d) Shows z∗, λT and λu at Ra = 107. Dotted lines represent the continuation to extrapolated
values for Pr = 0.07 and Ra = 107.

around (3.1). These are plotted for Pr = 0.07, 0.7 and 7 in figure 2(a–c), with figure
2(d) plotting their values for all Pr for Ra = 107. Figures 3 and 4 plot vertical
temperature and velocity profiles for Pr = 0.07 and 7 for the highest Ra in each case
to determine whether the profiles are similar enough to the previous Pr = 0.7 case
(Kerr 1996) for z∗, λT , and λu to have the same meanings. The profiles plotted are
the root-mean velocities,

Uh rms,Wrms = (u2)1/2, (w2)1/2, (5.1)

the temperature variances T ′rms = (T ′2)1/2, the mean temperatures T = T (z), and mean
horizontal velocities Uh = u. Kinetic energies can be found by taking U2

h rms,W
2
rms and

Reynolds numbers can be determined by taking Re = (Uh rms,Wrms)d/ν. The values
used in figure 2 are taken from long time averages, while the profiles in figures 3 and
4 are for only one time, averaged in horizontal planes and direction.

As was observed for Pr = 0.7 (Kerr 1996), for both Pr = 0.07 and Pr = 7 the
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Figure 3. Profiles of (a) root-mean velocities Uh rms(—–), Wrms(− − −) = (u2)1/2, (w2)1/2, and the
mean horizontal velocity Uh = |u|(− · −) in the direction of maximum mean flow; (b) temperature

variance T ′rms = (T ′2)1/2(− − −) and temperature T (——–) for a single time for the Pr = 0.07,
Ra = 2× 106.

profile of Wrms peaks in the centre and there is a peak near the boundary in the
Uh rms profile that can be used to define λu. The profile of T ′rms has a peak near the
boundary whose thickness scales with Ra the same way as the definition of a thermal
boundary layer thickness based on the wall derivative or Nusselt number in (2.6).
Therefore, the definitions of z∗, λT , and λu are the same as before. The mean velocity
profiles are discussed below.

The scaling of z∗, λT , and λu with Ra in figure 2 is also similar to the Pr = 0.7
case, with some small but possibly significant differences. By definition, the exponents
of z∗ ∼ 1/Re = Ra−ε, can be found from Reynolds numbers. Using the Reynolds
number formed by taking either the peaks of Wrms or Uh rms, previous numerical
and experimentally work has found that ε ∼ 0.46 to 0.54. For Pr = 0.07 and 0.3,
ε ≈ 0.46 in figure 2, which is consistent with the previous Pr = 0.7 numerical results
(Kerr 1996). For Pr = 7, ε = 0.56, which while surprisingly large, is consistent with
two-dimensional simulations for Pr = 7 for which ε = 0.54 (Werne et al. 1991). Since
λT ∼ 1/Nu, λT ∼ Ra−βT with βT = (0.25− 0.28). And if λu ∼ Ra−βu , then βu ≈ 1/7 as
before so that βu < βT < ε for all of the Prandtl numbers.

What does figure 2 tell us about the ordering and scaling of the three boundary
layer thicknesses for different Ra for the three Pr? Recall that Nu ∼ Ra2/7 scaling
was associated with z∗ < λT < λu in the Pr = 0.7 work (Kerr 1996). For Pr = 0.07,
the ordering for all Ra is z∗ < λu < λT and figure 2(d) would be consistent with this
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Figure 4. Profiles of (a) root-mean velocities Uh rms(——), Wrms(− − −) = (u2)1/2, (w2)1/2, and the
mean horizontal velocity Uh = |u|(− · −) in the direction of maximum mean flow; (b) temperature

variance T ′rms = (T ′2)1/2(− − −) and temperature T (——–) for a single time from the Pr = 7,
Ra = 107 calculation.

order of scaling for Pr < 0.07 and Ra ∼ 107. Since the low-Pr order of boundary
layer thicknesses is different from the order for Pr = 0.7, this would suggest the
possibility of a different scaling for Nu versus Ra for low Pr and Ra ∼ 107. This
is consistent with the βT ≈ 0.26 in figure 1(a) for Pr = 0.07 and βT ≈ 0.25 in the
mercury Pr = 0.025 experiments (Cioni et al. 1997) instead of βT = 2/7 ≈ 0.28.
Would a crossover to 2/7 be expected for Pr = 0.07? The trends for λu and λT are
such that a crossover would be expected for Ra ≈ 8× 106, just beyond the currently
computable range.

An alternative to calculating higher Ra in order to see a crossover is to do a series
of calculations for a higher Pr where the crossover would be within the range of Ra
that can be simulated. Initially the Pr = 0.7 data were considered as such a case.
For Pr = 0.7 there is a crossover from λu < λT to λu > λT between Ra = 104 and
105 and there is also a slight change in the Nu ∼ RaβT scaling, from βT < 0.28 for
Ra < 5×104 to βT = 0.28 for Ra > 5×104. However, this transition is not significant
enough and at too low a Rayleigh number to be a convincing example for such a
transition.

This is what inspired the extra set of Pr = 0.3 calculations reported here. For
Pr = 0.3 in figure 2(b) there is a crossover from λu < λT for Ra < 4× 105 to λu > λT
for Ra > 4× 105. This is where a change in scaling from βT ≈ 0.26 for Ra < 4× 105,
to βT ≈ 0.28 for Ra > 4 × 105 was noted in figure 1(b). Therefore, in this case the
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crossovers would be consistent with a transition from Nu ∼ Ra1/4 to Nu ∼ Ra2/7 once
the order λu > λT > z∗ appears. The implications for mercury Pr = 0.025 are given
below.

For Pr = 7, there is a crossover from z∗ greater than both λT and λu for low Ra to
z∗ < λT < λu at Ra = 2× 105. Consistent with this, βT ≈ 0.28 for Ra > 2× 105 and
βT < 0.28 for Ra < 2 × 105 is plausible in figure 1(c). There are some experiments
in water (Chu & Goldstein 1973) that find βT < 2/7 and a new experiment by Xu,
Bajaj & Ahlers (2000) for Pr = 4 that is consistent with βT < 2/7 for low Ra. The
observation here that the order z∗ < λT < λu does not appear for Ra < 2 × 105

makes it plausible that for high Pr, βT 6= 2/7 if Ra is small. However, without some
higher-Pr results that show z∗ > λT and z∗ > λu and a longer anomalous range in
Nu, it is impossible to determine if this small change is significant or due to the small
Reynolds number at this Ra and Pr.

Figure 2(d) plots z∗, λT and λu as a function of Pr. As in figure 1(d), the 107

values for Pr = 0.07 are extrapolated values and small changes in these extrapolated
values would not change the conclusions about crossovers. The scaling with Pr of
the three thicknesses are approximately z∗ ∼ Pr, λT = 0.5/Nu ∼ Pr−0.12 for Pr < 0.3
and nearly constant for Pr > 1, and λu ∼ Pr0.21. Crossovers as a function of Pr are
predicted for Ra = 107 near Pr = 0.07 and perhaps near Pr = 20 for a transition
to z∗ > λT and λu. Figure 2(d) and the Ra trends in figure 2(a–c) can be used to
predict the Ra when a crossover to z∗ < λT < λu occurs for any Pr. For mercury
(Pr = 0.025), the prediction is that z∗ < λT < λu would develop at Ra = 3 × 108, at
the upper end of the experimental measurements (Cioni et al. 1997). Therefore, for
Ra < 109, one would not expect these experiments to have shown a 2/7 scaling. We
would predict a Nu ∼ Ra2/7 regime if a long enough regime for Ra > 3 × 108 could
be observed. We have just become aware of new evidence for the transition predicted
here in a mercury experiment by Glazier et al. (1999) for Ra up to 8× 1011.

6. Large-scale flow
Knowing how the Rayleigh and Prandtl numbers and any of the crossovers dis-

cussed above affect the large-scale flow is necessary if we are to understand the
scaling physics. Recall that large-scale flows are one hypothesized source of the veloc-
ity boundary layer that is believed to be responsible for the 2/7 scaling. Time series of
laser lines for aspect ratio W/D = 12 and Pr = 6.7 show evidence of a transition to
a large-scale flow for this range of Ra (Krishnamurti & Howard 1981). For Ra = 106,
the patterns were elongated in x and without any slant, suggesting a series of roll
patterns passing by. For Ra = 2.6 × 106, the patterns were more discontinuous and
were slanted, indicating a preferred direction to the flow and perhaps a large-scale
sweeping pattern that was explained by a bootstrap model (Howard & Krishnamurti
1986). In large-aspect-ratio simulations for Pr = 0.7 with periodic sidewalls (Kerr
1996), a large-scale flow results from several large-aspect-ratio convection cells. This
section will discuss the changes associated with using impenetrable sidewalls, the de-
pendence on Pr, and what evidence there is in structures for the reported transitions
in scaling.

Low Prandtl number results are discussed first. These are qualitatively similar to
earlier visualizations for Pr = 0.7 (Kerr 1996). Then we discuss what evidence there
is for changes in flow patterns in the high Prandtl number regime. The conclusion
will be that there are distinct differences in the large-scale structures between the
largest and smallest Prandtl numbers of these simulations, but distinct changes in the
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(a)

(c)

(b)

(d )

Figure 5. Cross-sections of fluctuation temperature T ′ = T − T (z) for the Pr = 0.07, Ra = 2× 106

calculation. The slices shown are (a) a horizontal slice through the centre, (b) a horizontal slice
through the boundary layer, (c) a vertical slice through the centre and (d) a vertical slice on one
sidewall. The scale of each slice is the maximum (white) and minimum (black) in that slice.

flow as a function of Rayleigh number are less obvious. Many of the conclusions are
subjective and incomplete, so figures for a continuous range of Pr are included to
allow the readers to come to their own conclusions.

Figures 5, 7, 8 and 9 show greyscale contour slices of the fluctuation temperature
T ′ = T − T (z) for the highest Rayleigh numbers for Pr = 0.07, 0.3, 2 and 7
respectively. In addition, figure 6 shows greyscale contours of the vertical velocity w
to show how turbulent the field is at low Pr = 0.07. Figure 10 shows T ′ greyscale
contours for a lower Rayleigh number Ra = 106 for Pr = 7 because this is the
Pr for which changes in structure as Ra is increased were found experimentally
(Krishnamurti & Howard 1981). Pr = 0.7 is not shown because the structures are
little different from those reported earlier (Kerr 1996) and because the major features
are represented by Pr = 0.3. Pr = 4 is not shown because the trend with increasing
Pr is adequately represented by Pr = 2 and 7. The shading scale in each slice is
between the maximum (white) and minimum (black) values in that slice. These values
can be inferred from the profiles in figures 3 and 4 and the inverse Reynolds numbers
and Nusselt numbers that appear as length scales in figure 2.

The slices shown for each field are a horizontal slice through the centre, a horizontal
slice through the boundary layer, a vertical slice through the centre and a vertical slice
on one sidewall. The slices through the boundary layers are taken roughly halfway
between the position of the peaks of Uh rms and T ′rms such as in figures 3 and 4. The
vertical slices are plotted on a 4× 2 domain, although the physical domain is 4× 1.
Vertical slices have also not been remeshed onto a uniform grid from the original
Chebyshev mesh, so boundary layers appear thicker in proportion to the rest of the
flow than they are. For Pr = 0.07 and Pr = 7 (Ra = 107), velocities in the planes are
shown with arrows to demonstrate what types of large-scale flows and structures are
typical in these simulations.
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(a)

(c)

(b)

(d )

Figure 6. Cross-sections, as in figure 5, of vertical velocity w for the Pr = 0.07,
Ra = 2× 106 calculation.

(a)

(c)

(b)

(d )

Figure 7. Cross-sections, as in figure 5, of fluctuation temperature T ′ = T − T (z) for the
Pr = 0.3, Ra = 107 calculation.

In earlier work for Pr = 0.7 and periodic sidewalls (Kerr 1996), the entire flow
outside the boundary layers was dominated by a few large-scale convective cells, while
in the boundary layer there is a fine network of thin, extended plumes concentrated on
the large-scale pattern. A series of vertical slices in time showed the fine-scale networks



338 R. M. Kerr and J. R. Herring

(a)

(c)

(b)

(d )

Figure 8. Cross-sections, as in figure 5, of fluctuation temperature T ′ = T − T (z) for the Pr = 2,
Ra = 107 calculation.

(a)

(c)

(b)

(d )

Figure 9. Cross-sections, as in figure 5, of fluctuation temperature T ′ = T − T (z) for the Pr = 7,
Ra = 107 calculation.

being swept intermittently into the large-scale patterns that dominate the rest of the
flow. The large-scale patterns through the centre were conglomerations of thin plumes
originating in the boundary layer. The patterns did not change qualitatively as Ra
was increased except that plumes through the interior become thinner, networks near
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(a)

(c)

(b)

(d )

Figure 10. Cross-sections of fluctuation temperature T ′ = T − T (z) for the Pr = 7,
Ra = 106 calculation.

the boundaries were better defined, and the flow became more tangled and knotted
around vortex cores as it became more turbulent.

The horizontal slices for Pr = 0.07 and 0.3 in figures 5 and 7 show patterns that are
in many ways qualitatively similar to those seen previously for Pr = 0.7. Figure 8 for
Pr = 2 also shows some of these features and is included in the following discussion
to demonstrate the dependence of Pr. With free-slip instead of periodic sidewalls,
the results for Pr = 0.07 to 0.7 show a dominant crossing pattern of one sign in the
centre of the centre horizontal slice that is particularly obvious in vertical velocity,
with compensating lanes of the opposite sign nearer the corners. In the corners
themselves are plumes of the same sign as in the centre. The patterns of networks
in the boundary layers converge upon the interior patterns. In the boundary layer,
as Pr decreases from 2 to 0.3, the fine networks in temperature near the surfaces
become denser and thicker, perhaps due to increasing Reynolds number. Vertical
slices such as in figures 8(c) and 7(c) show how the individual plumes rising out of
these boundary layer patterns are becoming more bunched together as Pr decreases.
Slices of vertical velocity for Pr = 2 and 0.3 follow the same pattern.

These trends are not continued for T ′ for Pr = 0.07 in figure 5, where smoothing
by the increased thermal diffusivity seems to be winning over the greater complexity
that would be caused by the increased Reynolds number. Associated with the broader
temperature structures in the boundary layer for Pr = 0.07 in figure 5(b), the plumes
in the vertical slices of T ′ for Pr = 0.07 in figure 5(c) are much smoother than
those for Pr = 0.3 in figure 7(c). The large-scale flow indicated by the arrows in
figure 5(c) is two large-scale cells. The use of arrows suggests smooth variations in
the velocity. Figure 6 displays slices of vertical velocity to indicate that there is an
underlying fine-scale turbulent flow. For Pr = 0.07 the bunching together of fine
vertical motions has expanded until the bunches uniformly fill the entire domain in
figure 6(c). This fine structure extends to the top of the boundary layers, that is the
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peak of the T ′rms and Uh rms profiles in figure 3. In the vertical slices at the wall in
figures 5(d) and 6(d), the dominant pattern is flow coming into the wall at midlevel,
and then moving up or down. Motions at the vertical walls do not extend from
bottom to top in conjunction with plumes, but are dominated by forcing from the
interior.

Given the crossover in boundary length scales for Pr = 0.3 in figure 2(b), it might
be expected that patterns would be different for Pr = 0.3 at Ra = 107 and Pr = 0.07
at Ra = 2× 106 because they are in different regimes. It might also be expected that
Pr = 0.3 patterns for Ra < 4× 105 and Ra > 4× 105 would be qualitatively different
because they are in different regimes and that there would be some similarity between
Pr = 0.3 at Ra ≈ 105 and those for Pr = 0.07 at Ra = 2 × 106 because they are in
the same regime. Perhaps the more diffusive temperature structures in figure 5 and
the way velocity structures fill the entire domain in figure 6 represent this transition,
but there are no other pattern changes that could be associated with the crossover in
length scales. Patterns for Pr = 0.3 at Ra = 105 look more like Pr = 0.3 at Ra = 107

than Pr = 0.07 and there are no qualitative differences between individual velocity
structures for Pr = 0.07 in figure 6 and those for Pr = 0.3, where velocity patterns
are similar to the temperature patterns in figure 7.

Now we will consider Pr > 1. Figures 8 and 9 show temperature slices for Pr = 2
and 7 at Ra = 107, with arrows in figure 9 to show the large-scale flow. Patterns of
vertical velocity motions closely follow the temperature patterns, so there is no need
to include separate vertical velocity contours.

For Pr = 2 and 7, there are large-scale patterns associated with the boundaries
that appear in the horizontal slices through the centre, but they are different from
the crossing lanes seen for Pr = 0.07 and 0.3. As Pr increases in the boundary
layer, the horizontal patterns change gradually from what are being called networks
to the appearance of convective cells. The vertical slices for Pr = 2 and 7 do not
show bunches of plumes, rather they show that horizontal boundaries send individual
plumes into the interior that are often swept by the local mean motion and tend to
be tilted. An example would be around the swirling to the right centre of figure 9(d).
A cold plume to the right of the swirl is being swept and tilted to the right towards
the right-hand wall by a large-scale sweeping indicated by the arrows. A hot plume
to the left of the swirl is being swept and tilted to the left towards the central plume.
The term ‘mushroom caps’ could be used to describe the sweeping and tilting. The
sweeping motions observed in our simulations, while not encompassing the entire
domain as once believed, do support the basic theoretical interpretation that shears
and sweeping motions are related to the Nu ∼ Ra2/7 scaling. However we should note
that other experiments with screens to prevent sweeping seem also to have the 2/7
scaling (Xia & Liu 1997), as well as experiments with rough surfaces (Shen, Tong &
Xiu 1996; Du & Tong 1998).

In being swept, these individual plumes tend not to cross the entire domain,
although their penetration into the interior seems to be much greater than the
thermal boundary layer thickness. In the vertical slices through the centre in figures
8(c) and 9(c), there are no plumes that penetrate from boundary to boundary. Even
on the vertical wall in figures 8(d) and 9(d), only a few plumes penetrate. The result
is that, unlike Pr = 0.07 and 0.3, no signature of the boundary layer patterns seems
to persist into the centre horizontal slice at Pr = 7.

Could these tilted structures be associated with the laser line patterns observed in
the water tank experiments (Krishnamurti & Howard 1981)? They could be, if the
experiments were interpreted as evidence for localized sweeping patterns rather than
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for flows sweeping across the entire domain. Tilted plumes like those in figure 9(d)
would also be consistent with water tank visualizations (Wu & Libchaber 1992).

Recall that the laser line experiments also showed a transition in structure between
Ra = 106 and Ra = 2.6 × 106 (Krishnamurti & Howard 1981). For Pr = 7 and a
lower Ra ≈ 105, a crossover in length scales is seen in figure 2(c) and a minor change
in the scaling of Nu with Ra is seen in figure 1(c). In order to be more faithful to the
experimental laser strip pictures, time series of strips of temperatures and velocities
were taken while these calculations were running and stored for later use. Analysis of
these time series has yet to be done, so for now, to determine if there is an analogous
transition in the structure, figure 10 shows temperature slices for Pr = 7 and 106,
which is the lowest Ra for Pr = 7 that could be considered turbulent. A stronger
relationship to the boundaries can be seen, with plumes through the centre that are
connected to the boundaries and some element of the crossing pattern that appears
at lower Pr. However, a tendency for plumes to be tilted and probably swept by the
local mean flow, is also observed for Ra = 106 in figure 10(d). Therefore, the best
conclusion is that unlike the laser lines in the water tank experiment (Krishnamurti
& Howard 1981), a significant change in structure is not observed.

It was first reported that for the Pr = 7, Ra = 105 simulations (Kerr et al. 1995)
the maximum mean horizontal velocity max[Uh(z)] in one direction was the order
of 0.2 times the maximum of the root-mean velocity max[Uh rms(z)], whereas the
maximum mean velocities in the other direction is three times smaller. In addition,
a visualization using velocity arrows showed a large-scale sweeping pattern across
one wall. We have not found an example of such sweeping across a wall in any of
the higher-Ra calculations reported here; however figure 4(a) shows a mean velocity
profile Uh for Pr = 7 that is consistent with the lower-Ra result of Kerr et al. (1995).
The maximum of Uh with respect to the maximum of Uh rms is about twice the
maximum for Pr = 0.07 in figure 3(a).

7. Discussion
The primary result of this paper is that for the entire range of Prandtl numbers

studied, there is always a crossover in length scales such that the order and scaling
with Rayleigh number of three boundary layer thicknesses obey z∗ < λT < λu and
that once this regime is obtained that Nu ∼ RaβT with βT ≈ 2/7 is found. The scaling
with Ra of the three thicknesses in this regime for all Pr is consistent with earlier
results (Kerr 1996) for Pr = 0.7 where z∗ ∼ Ra−3/7, λT ∼ Ra−2/7 and λu ∼ Ra−1/7.

When some order other than z∗ < λT < λu is found, is a different Nusselt number
scaling obtained? Crossovers in these length scales for Pr = 0.3 and Pr = 7 are
associated with small changes in the Nu versus Ra scaling, in particular the crossover
to λu < λT for low Prandtl number could explain the Nu ∼ Ra1/4 for the Pr = 0.07
simulations and Pr = 0.025 mercury experiments (Cioni et al. 1997). Crossovers to
2/7 behaviour in Nu are predicted to be just beyond the maximum Ra simulated for
Pr = 0.07 and we have just learned that our predicted change to 2/7 for mercury
Pr = 0.025 has been observed (Glazier et al. 1999). The prediction for Pr ≡ 0 would
be that the 2/7 regime would never be reached and results at low Pr and moderate
Ra might be relevant (Thual 1992; Spiegel 1962). High-Pr results are consistent with
a slight decrease in Nu in experiments between Pr = 4 and 7 and are therefore
consistent with the experiments showing a slower decrease than predicted (Liu &
Ecke 1997; Niemela et al. 2000).

The crossovers with Ra for given Pr seem to be associated only weakly with
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changes in flow structure. However, there are significant changes in structure between
the smallest and largest Pr simulated. At large Pr, structures through the horizontal
centre of the flow are not strongly aligned with the geometry of the domain or
with clearly defined boundary layer cells. Only isolated plumes are observed that
are swept by intermediate-scale flows. At intermediate Pr, the structures through the
horizontal centre become aligned with the geometry and the cells in the boundary
layer turn more into networks that are composed of plumes that are being swept
into the larger-scale patterns between the boundary layers. The structures through the
centre could be characterized as chimneys containing conglomerations of plumes and
isolated plumes disappear. At very low Pr, the networking remains, but the sweeping
in the boundary layers is less obvious and the conglomerations of plumes cannot be
separated easily into separate chimneys.

Overall, the clearest change in structure with Pr is from aggregates of plumes for
Pr6 1 to individual plumes for Pr > 1. Since at Ra = 107 all the crossovers to
z∗ < λT < λu have occurred for 0.3 < Pr < 7, there is no obvious source for this
structural change.

Many of the issues studied here and in Kerr et al. (1995) have also been studied
in a new paper by Verzicco & Camussi (1999). The main differences in the flow
configuration are that they used aspect ratio 1, a cylindrical geometry, and no-slip
sidewalls. Further work on the differences due to A = 1 is under way (Kerr et al.
2000). The Rayleigh number of Verzicco & Camussi (1999) was slightly lower and they
studied Pr = 0.022 for mercury. The conclusions about different flow regimes at low
Pr, which is dominated by thermal diffusivity and large-scale flow, and high Pr, which
is dominated by individual plumes, are similar, although we have emphasized the role
of fine-scale turbulence at low Pr more. Their conclusions concerning crossovers are
different, largely because their velocity boundary layer thickness was neither z∗ nor λu.

The primary conclusion is that calculations at several Prandtl numbers all support
the suggestion by Kerr (1996) that the trends in boundary length scales are consistent
with Nu ∼ RaβT , 2/76 βT 6 0.309 being the only asymptotic high Rayleigh number
scaling regime for all finite Pr. This suggestion is now supported experimentally at Ra
up to 1017 in a helium tank (Niemela et al. 2000) and in mercury for Ra up to 8×1010

(Glazier et al. 1999). In the helium experiment, as noted above, the data are actually
reported to be more consistent with Nu ∼ Ra0.309, with Ra2/7 ruled out. However, it is
not clear to what extent the small aspect ratio modifies the exponent. The empirical
observations given here linking z∗, λT and λu have only partial theoretical support.
The current theories predict either z∗ (Shraiman & Siggia 1990) or λu (Castaing et al.
1989), but not both. These observations should encourage the theoretical community
to reconsider their theories and try to explain why both z∗ and λu appear to play
dynamical roles.

NCAR is sponsored by the National Science Foundation. Input from S. Ciliberto,
R. Ecke and M. Rast is appreciated. The major results were first presented at a
symposium in Los Alamos in May 1998 to honor R. H. Kraichnan.
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